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Abstract. We propose a non linear Langevin equation as a model for stock market fluctuations and crashes.
This equation is based on an identification of the different processes influencing the demand and supply,
and their mathematical transcription. We emphasize the importance of feedback effects of price variations
onto themselves. Risk aversion, in particular, leads to an “up-down” symmetry breaking term which is
responsible for crashes, where “panic” is self reinforcing. It is also responsible for the sudden collapse of
speculative bubbles. Interestingly, these crashes appear as rare, “activated” events, and have an exponen-
tially small probability of occurence. The model leads to a specific “shape” of the falldown of the price
during a crash, which we compare with the October 1987 data. The normal regime, where the stock price
exhibits behavior similar to that of a random walk, however reveals non trivial correlations on different
time scales, in particular on the time scale over which operators perceive a change of trend.

PACS. 02.50.Ey Stochastic processes — 89.90.4n Other areas of general interest to physicists

1 Introduction

Stock market fluctuations exhibit several statistical pe-
culiarities which are still awaiting for a satisfactory in-
terpretation. More strikingly, many of these statistical
properties are common to a wide variety of markets and
instruments. The most prominent features are [1-3,5-7]:

1. On short time scales, the variations of stock prices are
strongly non-Gaussian.

2. Market “volatility” (i.e. the conditional variance of the
fluctuations) is itself time dependent, with a slowly
decreasing, power-law like, autocorrelation function.

3. On very long time scales, the log of the price tends to
grow linearly with time with rare, large drops corre-
sponding to market crashes.

The first two properties are observed on a certain range
of time scales, ranging from an hour to several weeks, but
do not hold for very large time scales (several years) where
macroeconomic factors enter into consideration, nor for
very short time scales (minutes or so, the typical dura-
tion of a transaction) where the detailed structure of the
market has to be taken into account.

These “anomalies” have drawn considerable attention
recently, because of their intrinsic importance, but also be-
cause of possible analogies with physical phenomena such
as earthquakes or avalanches. The point is that crashes
correspond to a collective effect, where a large propor-
tion of the actors in a market decide simultaneously to
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sell their stocks; it is thus tempting to think of a crash as
some kind of critical point where (as in statistical physics
models undergoing a phase transition) the response to a
small external perturbation becomes infinite, because all
the subparts of the system respond cooperatively. Corre-
spondingly, it has been suggested that “crash precursors”
might exist, and in particular “log-periodic” oscillations
before the crash [8]. However, no microscopic model has
been proposed which substantiate such a claim. Actually,
there are as yet no convincing model which “explains” the
statistical features described above, although many pro-
posals have been put forward [9,11].

A crucial ingredient in model building is the specifica-
tion of the level (in our case, the time scale) at which one
aims to describes the properties of the system. There are
currently two major approaches to market dynamics in the
economics and finance literature. One approach is a “tem-
porary equilibrium” approach which assumes that supply
and demand equilibrate quickly enough to be considered
at instantaneous equilibrium at all times [9]. The other
one is that of market microstructure theory [10] which ex-
amines the implications of market structure, behavorial
assumptions about market participants and specific trad-
ing rules on price behavior at the transaction level.

However, our aim here is to describe market dynamics
on time scales where, according to empirical observations,
some interesting regularities which are common between
markets with different microstructures appear [2,5]. At
the same time, these time scales are not long enough to
allow the market to reach equilibrium: empirical studies
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show that at intraday time scales there is an imbalance
between supply and demand [4]. The level of descrip-
tion adopted here is therefore intermediate between the
macroeconomic level which is that of the market equilib-
rium models [9] and the individual agent level which is
that of the market microstructure theory [10].

The aim of this paper is to propose an alternative
description of the dynamics of speculative markets with
a simple Langevin equation. This equation is built from
general arguments, encapsulating what we believe to be
the essential ingredients; in particular, the feedback of the
price fluctuations on the behaviour of the market partici-
pants. We try to motivate as much as possible each term
in the equation, and the value of the corresponding pa-
rameters is estimated by comparing with empirical data.
Our basic idea is that although a reasonably simple de-
scription of each individual market participant is impos-
sible in quantitative terms, the collective behavior of the
market and its impact on the price in particular can be
represented in statistical terms by a stochastic dynami-
cal equation with a few number of terms. Our approach
is in the spirit of many phenomenological, “Landau-like”
approaches to physical phenomena [12].

2 A phenomenological Langevin equation

We denote the price of the stock at time ¢ as x(t). At any
given instant of time, there is an instantaneous demand
¢+(t) and an instantaneous supply ¢_(t) for the asset.
The first dynamical equation describes the effect of an off-
set between supply and demand, which tends to push the
price up (if ¢4 > ¢_) or down in the other case. In gen-
eral, one can write a relation between the instantaneous
return u(t) and the excess demand A¢ of the type

dx

L ou)=Fa9) A6=6,-6 ()
where F is an increasing function, such that F(0) = 0. In
the following, we will frequently assume that F is linear
(or else that A¢ is small enough to be satisfied with the

first term in the Taylor expansion of F), and write

u(t) = %

(2)
where \ is a measure of market depth i.e. the excess de-
mand required to move the price by one unit. When A is
high, the market can “absorb” supply/demand offsets by
very small price changes. Now, we try to construct a dy-
namical equation for the supply and demand separately.
Consider for example the number of buyers ¢ . Between
t and t + dt, a certain fraction of those get their deal and
disappear (at least temporarily). This deal is usually en-
sured by market makers, which act as intermediaries be-
tween buyers and sellers. The role of market markers is
to absorb the demand (and supply) even if these do not
match perfectly. Of course, the market makers will absorb
buy orders more quickly if they know that the number of
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sellers is high, and vice versa. (In a non-centralized mar-
ket, orders are satisfied when a buyer meets a seller, which
is all the more probable if there are larger numbers of buy
orders and sell orders on the market.) The simplest way
to model this effect is by taking a number of orders satis-
fied per unit time proportional to the number of buy (and
sell) orders present on the market at time ¢. The effect
of absorption of orders by the market (MM) can thus be
modelled as:

dos
dt |

= _Fi(¢$)¢i (3)

where I" are rates (inverse time scales). We assume that
market makers act symmetrically, i.e., that Iy = I'_. To
lowest order in ¢, we write:

I(@)=v+~¢o+.. (4)

On liquid markets, the time scale 1/ before which a deal
is reached is short; typically a few minutes or less (see also
below for another interpretation of 1/7).

There are several other effects which must be modeled
to account for the time evolution of supply and demand.
One is the spontaneous (SP) appearance of new buyers (or
sellers), under the influence of new information, individual
need for cash, or particular investment strategies. This
gives rise to a variation in supply and demand, which we
model as the sum of a trend and a random term:

d
Wl —ma(t) ) 5)

sp
where 7+ have zero mean, and a short correlation time 7.
m is the average increase of demand (or supply), which
actually also depends on time through the time dependent
anticipated return R(t) and the anticipated risk X'(¢). It is
quite clear that both these quantities are constantly reesti-
mated by the market participants, with a strong influence
of the recent past. For example, “trend followers” extrapo-
late a local trend into the future. On the other hand, “fun-
damental analysts” estimate what they believe to be the
intrinsic value of the stock; if the observed price is above
this “true” value, the anticipated trend is reduced, and
vice versa. An important empirical fact is that since the in-
formation on the “true” value is obviously incomplete, the
past price fluctuations themselves are often considered as
containing some information, at least on what other mar-
ket participants anticipate. In mathematical terms, these
effects can be represented as:

R(t) = Ro + au — k(z — xo);
E /_t dt' Kg(t —t')u(t)) (6)

where Kpg is a normalized kernel (i.e. of integral one)
defining how the past local trend w is measured by the
agents. The coefficient o measures the impact of the ob-
served recent trend on the anticipated return. One actu-
ally expects a to depend on u, and to be larger for nega-
tive @ than for positive @: loosing money is worse than not
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gaining as much as one could have had. We shall therefore
write: & = a — a’u in the following. Finally %k is a mean-
reversion force, towards an average (over the fundamental
analysts) “true price” zo®.

Similarly, agents use past variations of the price to
infer a “volatility” parameter for the asset, indicative of
its riskiness. Typically such a parameter is calculated as
a short-term historical standard deviation of returns?

t dt' K5 (t — ') [u(t))?.

(7)

The higher the volatility of the asset (as perceived by the
market), the lower will be the demand of a risk averse in-
vestor for this asset: market excess demand will thus be a
decreasing function of volatility. The simplest functional
form for the dependence of excess demand on volatility
is thus a decreasing affine function. Correspondingly, ex-
panding m4 (R, X) to lowest order, one has:

(t) = Xo + fu?; $=/

—0o0

(®)

where the signs of the different coefficients are set by the
observation that m, is an increasing function of antici-
pated return R and a decreasing function of risk X', and
vice versa for m_. Equation (8), with ay expanded to first
order in @, contains all the terms to order u? which arise
if one assumes that the agents try to reach a trade-off be-
tween risk and return: the demand for an asset decreases
if is recent evolution shows high volatility and increases if
it shows an upward trend. This is the case for example if
the investors follow a mean-variance optimisation scheme
[13], with adaptive estimates of risk X'(¢) and return R(¢).

Yet another contribution to the change of demand and
supply, which has a similar structure, comes from the exis-
tence of option markets, where traders hedge their option
positions by buying or selling the underlying stock. The
Black-Scholes rule for hedging relates the number of stock
to be held to the price of the underlying by a non linear
formula [14]. A change of price thus leads to an increase
in the demand or supply which can also be represented by
a4+ and B4 type of terms, reflecting an average of the so-
called “A”’s’ and the “y”s’ of the different options [14]. In
particular, the Black-Scholes hedging strategy is a positive
feedback strategy of the trend following type; actually, the
1987 crash is often attributed (at least in part) to the au-
tomatic use of the Black-Scholes hedging strategy, which
automatically generates sell orders when the value of the
stock goes down (portfolio insurance)[14].

We are now in position to write an equation for the
supply/demand offset A¢ by summing all these different

M4+ = Mo+ + 04U + 5i$ — k1 (z — o)

! Note that xo is actually itself time dependent, although its
evolution in general takes place over rather long time scales
(months/years).

2 In principle, a long term average return squared should
be substracted from equation (7). This correction is however
negligible since fluctuations are in general much larger than
average trends.
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contributions:

ddg _

= = —vAP + mg + ati — a'u?

—bu? — k(z — 20) + n(t) (9)
with a,a’, b, k > 0. Note in particular that a’, b > 0 reflects
the fact that agents are risk averse, and that an increase of
the local volatility always leads to negative contribution
to A¢. This feature will be crucial in the following. For
definiteness, we will consider 7 to be Gaussian white noise
and normalize it as:

(n(t)n(t')) = 2A*Da(t —t') (10)
where D measure the susceptibility of the market to the
random external shocks, typically the arrival of informa-
tion. In principle, D should also depend on the recent
history, reflecting the fact that an increase in volatility in-
duces a stronger reactivity of the market to external news.
In the same spirit as above, one could thus write:

D =Dy + D1m (11)
For simplicity, we will neglect the influence of D; in the
following sections, but comment on its effect in the con-
cluding section.

Finally, let us note that equation (9) can be extended
to allow for agents with different reaction times. For exam-
ple, the term a fjoo dt' Kr(t — t')u(t’) can be generalized
as:

Zai [ ~ dt' Kb (t — t')u(t') (12)

where the K have different ranges which can reflect the
fact that there exists several population of traders with
different time horizons. Note that a; < 0 corresponds to
contrarian traders.

3 Analysis of the linear theory
Liquid vs. illiquid markets

Let us consider the linear “risk neutral” case where a’ =
b = 0. For simplicity, we will assume in the following that
Kpr(t) = I'exp—(I't), and first consider the local limit
where I' is much larger that -y (short memory time). In
this case, the equation for x becomes that of an harmonic
oscillator 3:

dr k

2, a
RN (R IF A CRLO RS VO

where mg has been absorbed into a redefinition of Zg :=
xo + mo/k. For liquid markets, where A and ~ are large

3 In an oral seminar given in Jussieu in June 1997, Doyne
Farmer also presented a second-order equation for the price.
We are not aware of the existence of a written version, and do
not know to what extend his analysis is similar to ours.
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enough, the “friction” term % := v — a/\ is positive. In
this case the market is stable, and the price oscillates
around an equilibrium value Zg, which is higher than the
average fundamental price if the spontaneous demand is
larger than the spontaneous supply (i.e. mg is positive),
as expected when the overall economy grows. One can also
compute the time correlation function of the price fluctu-
ations. The important parameter is:

k

6;:)\—5/2.

(14)

For liquid markets, ¢ < 1. The correlation is found to be
the sum of two exponentials, with correlation times 71, 7o:

1
Ty X —

6 (15)

T X~

2 =

and amplitudes A; 5 such that Az ~ €2 A;. Thus, on a time
scale 71, the correlation function falls to a very small value
~ €2. This allows one to identify 7; with the correlation
time observed on liquid markets, which is of the order of
several minutes [2], thereby fixing the order of magnitude
of Tfl = 4 =~ ~. Thus, on time scales such that 11 < t <
T9, the stock price behaves as a simple biased random walk
with volatility 02 = 2D7Z, before feeling the confining
effect of the “fundamental” price. Since the fundamental
price is surely not known to better than — say — 10%,
and that the typical variation of the price of a stock is
also around 10% per year, it is reasonable to assume that
the time scale 72 beyond which “fundamental” effects (as
represented by the harmonic term) play a role is of the
order of a year 4. This leads to € ~ 10~%. Hence, for liquid
markets, the role of the confining term can probably be
neglected, at least on short time scales.

The situation is rather different for illiquid markets,
or when trend following effects are large, since 4 can be
negative. In this case, the market is unstable, with an
exponential rise or decay of the stock value, corresponding
to a speculative bubble. However, in this case, dz/dt grows
with time and it soon becomes untenable to neglect the
higher order terms, in particular the risk aversion terms
proportional to a’, b. We will comment on this case below.
Let us however start by analyzing the role of b for liquid
markets for which, as explained above, it is reasonable to
set k= 0.

4 Risk aversion induced crashes as activated
events

Still focusing on the limit where the memory time I"~! is
very small ®, one finds the following non linear Langevin

4 Beyond the year time scale, however, the evolution of o
itself cannot be neglected.

5 We assume in the following that K5, = Kg; note that in
this limit the coefficient a’ can be absorbed in a redefinition
of b.
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Effective Potential

V(u)

Fig. 1. Shape of the effective potential V' (u). For liquid mar-
kets, ¥ > 0 and V(u) is minimum for u o myg. For illiquid
markets, or when the “trend following” effect is large, the min-
imum moves to to positive value unrelated to mg. The inter-
esting point is the presence of a potential barrier, separating
a normal random walk like regime from a crash regime.

equation for the instantaneous return u(¢):

1
W 2y () =

du vl
it~ A A

o (). (16)

This equation represents the evolution of the position w of
a viscous fictitious particle in a potential V (u) represented
in Figure 1.

In order to keep the mathematical form simple, we
set the average trend mg/A to zero (no net average offset
between spontaneous demand and spontaneous supply);
this does not qualitatively change the following picture,
unless my is negative and large (in which case V(u) looses
its minimum). The potential V' (u) can then be written as:

Yoo, b 3
== — 1
V(w) 5 U + U (17)
which has a local minimum for v = 0, and a local maxi-
mum for u* = —\y/b, beyond which the potential plumets
to —oo. The “barrier height” V* separating the stable re-

gion around u = 0 from the unstable region is given by:

;yu*Z

(18)
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The nature of the motion of v in such a potential is the
following: starting at uw = 0, the particle has a random
harmonic-like motion in the vicinity of v = 0 until an
“activated” event (i.e. driven by the noise term) brings the
particle near v*. Once this barrier is crossed, the fictitious
particle reaches —oo in finite time. In financial terms, the
regime where u oscillates around v = 0 and where b can be
neglected, is the “normal” random walk regime discussed
in the previous paragraph. (Note that the random walk
is biased when mg # 0.) This normal regime can however
be interrupted by “crashes”, where the time derivative of
the price becomes very large and negative, due to the risk
aversion term b which enhances the drop in the price. The
point is that these two regimes can be clearly separated
since the average time ¢* needed for such crashes to occur
can be exponentially long, since it is given by the classical
Arrhenius-Kramers formula [15,16]:
U;*QTl
p ( 352 ) (19)

. % 2m
t* =277 exp )= ex
v

where D is the variance of the noise n and 71 = 1/4. Tak-
ing t* = 10 years, 0 = 1% per day, and 7; = 10 minutes,
one finds that the characteristic value ©* beyond which
the market “panics” and where a crash situation appears
is of the order of —1% in ten minutes, which not unreason-
able. The ratio appearing in the exponential can also be
written as the square of w*7y/0/71; it thus compares the
value of what is considered to be an anomalous drop on
the correlation time (u*71) to the “normal” change over
this time scale (o4/71).

Note that in this line of thought, a crash occurs be-
cause of an improbable succession of unfavorable events,
and not due to a single large event in particular. Further-
more, there are no “precursors” (characteristic patterns
observed before the crash): before u has reached u*, it is
impossible to decide whether it will do so or whether it
will quietly come back in the “normal” region u ~ 0. Note
finally that an increase in the liquidity factor v reduces
the probability of crashes. This is related to the stabiliz-
ing role of market makers, which appears very clearly.

An interesting prediction concerns the behaviour of the
price once one enters the crash regime i.e. once u becomes
larger (in absolute value) than u*. Neglecting the noise
term, one finds that the stock price is given by:

x(t) =" + %ln [exp(F(tf —t)) — 1] (20)
which diverges logarithmically towards —oco when ¢
reaches a final time ty. Of course, in practice, this di-
vergence is not real since when the price becomes too
low, other mechanisms, which we have not taken into ac-
count in the model, come into play. One thus expects that
some external mechanism interrupts the crash, which in
the Langevin language, correspond to a “reinjection” of
the particle around u = 0. Formula (20) is compared in
Figure 2 to the observed price of the S&P index during
the 1987 October crash, where we have fixed ¢ to be the
time when the price reaches its minimum. This leads to
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Crash of the S&P in 1987
From Oct 15, 14.20 to Oct 20, 16.30
350 ‘ ‘
N —— Observed
N ——- FitEq. (18)
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Fig. 2. Evolution of the New-York S&P index during the 1987
October crash. The dotted line is a fit with the noiseless for-
mula (20), where t; is taken to be the time when the index
reached its minimum. At this point, our model certainly breaks
down, since other effects, not taken into account in the present
approach, come into play. This fit thus does not really probe
the logarithmic divergence, but is useful to fix the values of 4
and A/b.

5 = 4.5 x 1073 (in minutes™*) and \/b = 12.9 (S&P
points), from which we estimate u* = 3.5 S&P points per
hour (more than 1% per hour). The last figure is not un-
reasonable; however, the order of magnitude found for ¥
is much smaller than expected, on the basis that 77 is ten
minutes or so. We shall come back to this point below,
in Section 6.

5 llliquid markets: speculative bubbles
and collapse

Suppose now that the trend following tendency is strong
so that 4 < 0. The potential V' (u) has a minimum for
u = u* which is now positive, and a maximum for u = 0.
The price increment u oscillates around a positive value
unrelated to mg, which means that there is a non zero
trend not based on true growth but entirely induced by
the fact that a price increase motivates more people to
buy — this is called a speculative bubble. After a time
t, the price has risen on average by an amount wu*t.



548

If this increase is too large, it becomes illegitimate to
neglect the role of the “fundamental” price xy. The full
potential in which u evolves is actually given by V(u) +
k(x —xzo)u/\. It is easy to see that this potential has a lo-
cal minimum (which leads to the above sustained growth)
only when:

7* > 4%(33 — x0) (21)
but that this minimum disappears for larger values of = —
xo. Assuming that z(t = 0) = ¢, we thus find a time ¢,
where the bubble has to collapse, since the (metastable)
equilibrium around u* is no longer present. The lifetime
of the bubble is given by:

a— Ny
k

As could be expected, the stronger the “spring” term k
pulling the price back towards the fundamental value xg,
the shorter will be the duration of speculative bubbles.
This spring term may be interpreted as proportional to
the fraction of “fundamentalists” in the market.

tb:’

(22)

6 Memory effects

Up to now, we have assumed that the impact of a change
of price on the behaviour of the market participants was
instantaneous, i.e. that the kernels Kz and K used to
estimate the average return and risk have a typical mem-
ory time shorter than any other time scale in the problem,
in particular y~!. Since we have argued that y~! is of the
order of a few minutes on liquid markets, this assumption
is not very realistic: it is more reasonable to assume that
agents judge the evolution of risk and return on longer
time scales, at least several days. We are thus actually in
the opposite limit where I' < . Fortunately the case of
an exponential memory kernel still leads to a tractable
model, provided a’ = 0. It is easy to show that the
dynamical equation now reads:
d*u du m b o
iz~ Dy F{A i A“}
1 dn
+ \ [Fn(t) + dt] (23)
which indeed leads back to equation (16) in the limit
I' — oo. Equation (23) governs the evolution of a mas-
sive particle in the very same potential as the one above
(Fig. 1). One can show that in this case, for b = my = 0,
and in the limit where I" < v, the correlation function of
the increment u is given by:

(tult))) = o [ (3 + 7 T) exp(~7lt — ')
H(I? + 4T exp — (It — t'|>} (24)

(with I" = 2I"a/\y) which thus decays rapidly (on a time
4~ 1) to a value which can be negative if a < 0, before
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slowly going to zero on time scales ~ I'~!. Interestingly,
the empirical correlation function of short time increments
indeed shows a negative minimum on time scales of the
order of 15 minutes [2,5]. The relative amplitude of this
minimum (as compared to (u(t)?)) is of the order of a
few %. This could thus be interpreted as the effect of fast
“contrarian” traders superposed to the regulatory action
of the market makers (contributing to a negative a).

For b > 0, one still has a sharp distinction between a
“normal” regime, where the stock price performs a ran-
dom walk with volatility o (except that, as just discussed,
the increment correlation function has a small tail decay-
ing on time scales I'"1), and a “crash” regime, when the
“particle” manages to reach the top of the potential bar-
rier. The theory of activated processes can be extended to
massive particles. In the limit I" < 4, the average time
between crashes t* is given by a formula very close to the
one above [15,16]:

(25)

i.e., only the prefactor of the exponential is changed. Note
that, as could be expected intuitively, the fact that there
is a delay in the reaction of traders tends to stabilize
the market, since the crash time is multiplied by a fac-
tor \/7/ I

Finally, the dynamics of the price when the crash
has started is also affected by the presence of a memory.
The truly asymptotic behaviour of equation (23) (for zero
noise) is given by:

6

u(t) ~ —ﬁ(z&f — )72 (26)

which leads to a (tf —t)~! divergence of the price itself.
However, as noticed above, this divergence is certainly in-
terrupted by effects which our model cannot describe. In
order to compare with empirical data, in particular that of
the crash of 1987, one can notice that the time scale over
which the crash took place (days) is much larger than 51,
It is thus reasonable to neglect the second derivative term
as compared to the first. In the limit where I < ~y, we are
thus led to:

du oI’
=Z__r 2 27
dt Ay (27)
the solution of which is of the same form as the one with-
out memory, except for the coefficients:

z(t) =" + 2—; In[exp(I'(ty —t)) —1]. (28)

The same fit as in Figure 2 is thus adequate. However,
interestingly, one finds that it is now I, rather than ¥,
which appears in the exponential. In other words, the time
scale during which the crash develops is much longer; from
the fit we find (see Fig. 2): '™ ~ 220 minutes (half a day).
The estimate of u*, as Ay /b, is unaffected.
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7 Concluding remarks

We hope to have convinced the reader that the above
Langevin equation, which is based on an identification
of the different processes influencing supply and demand
and their mathematical transcription, captures many of
the features seen on markets. We have in particular em-
phasized the role of feedback, in particular through risk
aversion, which leads to an “up-down” symmetry break-
ing non linear term w(t)?. This term is responsible for the
appearance of crashes, where “panic” is self reinforcing;
it is also responsible for the sudden collapse of specula-
tive bubbles. Interestingly, however, these crashes are rare
events, which have an exponentially small probability of
occurence (see Eq. (19)). We predict that the “shape” of
the falldown of the price during a crash should be given
by equation (28), which is compatible with empirical data
(Fig. 2). An interesting feature of our simple model is
that it implies a relation between parameters describing
the statistical properties of returns during the “normal”
regime and the frequency of crashes (Eq. (19)).

The “normal” regime, where the stock price behaves
as a random walk, reveals non trivial correlations on the
time scale over which operators perceive a change of trend.
In particular, a small negative dip related to the existence
of contrarian traders can appear. In this respect, it is im-
portant to stress that within these models the presence of
correlations lead, in principle, to simple winning strategies
(on average). It is however easy to convince oneself that
if the level of correlations is small (for example, as seen
above, of order of a few percent after tens of minutes),
the transaction costs are such that arbitrage cannot be
implemented in practice [2]. Therefore, we believe that
non trivial correlations can be observed on financial data,
and do actually arise naturally when feedback effects are
included.

Before closing, we would like to discuss briefly sev-
eral other points. The first one concerns the fact that we
have considered x to be the price, rather than the log of
the price. Of course, on short time scales, this does not
matter, and actually a description in terms of the price it-
self is often preferable on short time scales [2]. On longer
time scales, however, the log of the price should be pref-
ered since it describes the evolution of prices in relative
rather than absolute terms. However, on these long time
scales, one should also take into account the evolution of
the model parameters (such as the fundamental price zo,
or the average trend mg), which are related to economic
factors and thus not amenable to such a simple statistical
treatment, based on consideration of a purely speculative
market. Second, we have identified a “normal” regime,
where u oscillates around zero, and a crash regime for
|u] > w*. In the model presented above, the “normal”
fluctuations are Gaussian® if 7 is Gaussian and if the re-

5 Note that in our model, “normal” fluctuations and crashes
describe two very different regimes of the same dynamical equa-
tion. In this sense, we agree with the idea that market crashes
are indeed “outliers” from a statistical point of view [17], since
the shape of the tail of the distribution in the normal regime
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lation between price changes and supply/demand unbal-
ance is linear. In order to account for the large kurtosis
observed on markets during “normal” periods (i.e. exclud-
ing crashes), one necessarily has to take into account ei-
ther the non linearity of the price change and/or the in-
termittent (non-Gaussian) nature of the random shocks,
in particular the role of the feedback term D; introduced
in equation (11), which can easily be shown to lead to “fat
tails”. Although the quantitative formulae given above are
affected by such effects, the qualitative picture will remain.

Finally, the above model, where crashes appear as ac-
tivated events, suggests a tentative interpretation for “log-
periodic” oscillations seen before crashes [8]. Imagine that
each time u reaches — by accident — an anomalously nega-
tive value (but above u*), the market becomes more “ner-
vous”. This means that its susceptibility to external dis-
turbances like news will increase. In our model, this can
be described by an increase of the parameter D o o2,
through the term D; in equation (11). If D increases by
a certain value d D at every accident and since D appears
in an exponential, this implies that the average time At
before the next “accident” is decreased by a certain factor
which, to linear order in §D, is constant:

u*27_1

302 )’
This leads to a roughly log-periodic behaviour, which in-
deed predicts that the time difference between two events
is a geometric series. However, our scenario is not related
to a critical point: the crash appears when u exceeds u*,
and not when At — 0, i.e., when crash events accumu-
late. In this respect, it should be noted that according
to the critical log periodic theory, there should have been

another crash near the end of November 1997, and then
again roughly 10 days later, which did not occur [18].

Aty = At,87P/P g —exp ( (29)

We would like to thank J.P. Aguilar, S. Galluccio, L. Laloux
and especially M. Potters for many discussions on the problem
of stock market fluctuations and crashes.
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